Skybeard Documentation
Release 1

Lance Maverick

January 17, 2017

Contents:

1 Introduction 3
2 Quickstart guide 5
2.1 Installation L e e e e e e e e e 5
2.2 Running Skybeard L 5
2.3 Skybeard’smany beards L e e e e e e e e 5
24 Growinganewbeard L L e e e e e e e e e e e 6
3 Project Modules 7
3.1 beards Module L e e e e e e 7
3.2 decorators Module L e e e e e e e e 9
33 utilsModule e e e e e 10
34 helpPackage 10
3.5 autoloaders Package 10
4 Indices and tables 11
Python Module Index 13

Skybeard Documentation, Release 1

Contents: 1

Skybeard Documentation, Release 1

2 Contents:

CHAPTER 1

Introduction

Skybeard is a plug-in based bot for telegram, and uses the telepot library.

Skybeard Documentation, Release 1

4 Chapter 1. Introduction

CHAPTER 2

Quickstart guide

2.1 Installation

It is recommended to use a virtualenv for Skybeard. Create and activate the virtual environment with

virtualenv venv
source venv/bin/activate

then install the base requirements with

‘pip install -r requirements.txt ‘

You will then need to make a config.py. An example config.py is provided so you can simply:

’cp config.py.example config.py ‘

2.2 Running Skybeard

To run skybeard define your key in the environment variable $TG_BOT_TOKEN or as an argument with —k and run
main.py. this can be done easily e.g.:

’./main.py -k 99121185:RUE-UAa7dsEaagAKkysPDjga2X7KxX48e

2.3 Skybeard’s many beards

Skybeard source documentation: http://skybeard-2.readthedocs.io/en/latest/ Skybeard wears many beards. The bot
will automatically load any “beard” (a plug-in) that is placed in the beards folder. Beards are typically structured like
S0:

beards

|
___myBeard

__init__.py

config.py

requirements.txt

http://skybeard-2.readthedocs.io/en/latest/

Skybeard Documentation, Release 1

| README

In this example the myBeard folder containts a requirements.txt for any additonal dependencies so
they can be pipped, a config.py file for configuration of the beard and settings and the __ _init__ .py
which contains the class that that is the interface between the plug-in and skybeard. This interface
class inherits from skybeard.beards.BeardChatHandlerwhich handles the mounting of the plug-in,
registering of commands etc, and also thetelepot.aio.helper.ChatHandler*.

The folder can also contain any other python modules and files that are needed for the plugin.

2.4 Growing a new beard

Creating a new beard requires knowledge of the telepot telegram API, see: http://telepot.readthedocs.io/en/latest/

An example async plug-in that would echo the user’s message would look like this:

import telepot
import telepot.aio
from skybeard.beards import BeardChatHandler

class EchoPlugin (BeardChatHandler) :

def _ _init__ (self, =xargs, =*xkwargs):
super () .__init__ (xargs, =*xkwargs)
#register command "/hello" to dispatch to self.say_hello()
self.register_command("hello", self.say_hello)

#is called when "/hello" is sent
async def say_hello(self, msg):
name = msqg['from']['first_name']
await self.sender.sendMessage('Hello {}!'.format (name))

#is called every time a message 1is sent
async def on_chat_message(self, msg):
text = msg['text']
await self.sender.sendMessage (text)
await super () .on_chat_message (msqg)

This plug-in will greet the user when they send ‘/hello” to Skybeard by using the register_command ()
method of the BeardChatHandler and will also echo back any text the user sends by overwriting the
on_chat_message () method (and calling the base method with super () afterwards).

See the examples folder for examples of callback functionality, timers, and regex predication.

6 Chapter 2. Quickstart guide

http://telepot.readthedocs.io/en/latest/

CHAPTER 3

Project Modules

3.1 beards Module

3.1.1 beards Module

Handles the loading and running of skybeard plugins. architecture inspired by:
http://martyalchin.com/2008/jan/10/simple-plugin-framework/ and http://stackoverflow.com/a/17401329

class beards .Beard (name, bases, attrs)
Bases: type

Metaclass for creating beards.
beards =[]

register (beard)
Add beard to internal list of beards.

class beards .BeardChatHandler (*args, **kwargs)
Bases: telepot.aio.helper.ChatHandler

Chat handler for beards.

This is the primary interface between skybeard and any plug-in. The plug-in must define a class that inherets
from BeardChatHandler.

This class should overwrite __commands__ with a list of tuples that route messages containing commands, or
if they pass certain “Filters” (see skybeard.beards.Filters). E.g:

‘“‘Python __commands__ = [
(‘mycommand’, ‘my_func’, ‘this is a help message’), (Filters.location, ‘my_other_func’, ‘another

help message’)]

(XX3

In this case, when the bot receives the command “/mycommand”, it will call self.my_func(msg) where msg is a
dict containing all the message information. The filter (from skybeard.beards) will call self.my_other_func(msg)
whenever “msg” contains a location. The help messages are collected by the help functions and automatically
formatted and sent when a user sends /help to the bot.

Instances of the plug-in classes are created when required (such as when a filter is passed, a command or a regex
pattern for the bot is matched etc.) and they are destructed after a set timeout. The default is 10 seconds, but
this can be overwritten with, for example

_timeout = 90

http://martyalchin.com/2008/jan/10/simple-plugin-framework/
http://stackoverflow.com/a/17401329
https://docs.python.org/library/functions.html#type

Skybeard Documentation, Release 1

The class should also define a __userhelp__ string which will be used in the auto help message generation.

deserialize (data)
Deserializes the callback data

classmethod get_name ()
Get the name of the beard (e.g. cls.__name__).

get_username ()
Returns the username of the bot

on_chat_message (msg)
Default on_chat_message for beards.

Can be overwritten in order to define the behaviour of the plug-in whenever any message is received.

NOTE: super().on_chat_message(msg) must be called in the overwrite to preserve default behaviour. This
is usually done after custom behaviour, e.g.

‘“‘Python async def on_chat_message(self, msg):
await self.sender.sendMessage(“I got your message!”)
super().on_chat_message(msg)

(113

on_close (¢)
Removes per beard logger handler and calls telepot default on_close.

register_command (pred_or_cmd, coro, hlp=None)
Registers an instance level command.

This can be used to create instance specific commands e.g. if a user needs to type /cmdSOMEAPIKEY:
‘' self.register_commmand (' cmd{}’.format (SOMEAPIKEY), ’'name_of_coro’)

serialize (data)
Serialises data to be specific for each beard instance.

Serialize callback data (such as with inline keyboard buttons). The id of the plug-in is encoded into the
callback data so ownership of callbacks can be easily checked when it is deserialized. Also avoids the
same plug-in receiving callback data from another chat

classmethod setup_beards (key)
Perform setup necessary for all beards.

class beards.Command (pred, coro, hlp=None)
Bases: object

Holds information to determine whether a function should be triggered.

class beards.Filters
Bases: object

Filters used to call plugin methods when particular types of messages are received.
For usage, see description of the BeardChatHandler.__commands__ variable.

classmethod document (chat_handler, msg)
Filters for sent documents

classmethod location (chat_handler, msg)
Filters for sent locations

8 Chapter 3. Project Modules

https://docs.python.org/library/functions.html#object
https://docs.python.org/library/functions.html#object

Skybeard Documentation, Release 1

classmethod text (chat_handler, msg)
Filters for text messages

class beards.SlashCommand (cmd, coro, hlp=None)
Bases: object

Holds information to determine whether a telegram command was sent.

class beards.TelegramHandler (bot, parse_mode=None)
Bases: logging.Handler

A logging handler that posts directly to telegram
emit (record)

exception beards . ThatsNotMineException
Bases: Exception

Raised if data does not match beard.
Used to check if serialized callback data belongs to the plugin. See BeardChatHandler.serialize()

beards.command_predicate (cmd)
Returns a predicate coroutine which returns True if command is sent.

beards.create_command (cmd_or_pred, coro, hlp=None)
Creates a Command or SlashCommand object as appropriate.

Used to make __commands___ tuples into Command objects.

beards.regex_predicate (pattern)
Returns a predicate function which returns True if pattern is matched.

3.2 decorators Module

3.2.1 decorators Module
decorators.debugonly (f or_text=None, **kwargs)
A decorator to prevent commands being run outside of debug mode.

If the function is awaited when skybeard is not in debug mode, it sends a message to the user. If skybeard is run
in debug mode, then it executes the body of the function.

If passed a string as the first argument, it sends that message instead of the default message when not in debug
mode.

e.g.

@debugonly ("Skybeard is not in debug mode.")

async def foo(self, msqg):
This message will only be sent 1if skybeard is run in debug mode
await self.sender.sendMessage ("You are in debug mode!")

decorators.onerror (f_or_text=None, **kwargs)
A decorator for sending a message to the user on an exception.

If no arguments are used (i.e. the function is passed directly to the decorator), beard.__onerror__(exception) is
called if the decorated function excepts.

3.2. decorators Module 9

https://docs.python.org/library/functions.html#object

Skybeard Documentation, Release 1

If a string is passed as the first argument, then the decorated function sends this message instead of calling the
beard.__onerror__ function. kwargs are passed to beard.sender.sendMessage and beard.__onerror__(exception)
is called.

If only kwargs are passed, then the decorated function attempts beard.sender.sendMessage(**kwargs) and then
calls beard.__onerror__(exception).

3.3 utils Module

3.3.1 utils Module
utils.all_possible_beards (paths)
List generator of all plug-ins that Skybeard has found and can be loaded

utils.embolden (string)
wraps a string in bold tags

utils.get_args (msg_or_text, return_string=False, **kwargs)
Helper function when the command used in the telegram chat may have arguments, e.g /command argl arg2.
Returns a list of any arguments found after the command

utils.get_literal_beard_paths (beard_paths)
Returns list of literal beard paths.

utils.get_literal_path (path_or_autoloader)
Gets literal path from AutoLoader or returns input.

utils.is_module (path)
Checks if path is a module.

utils.italisize (string)
wraps a string in italic tags

utils.partition_text (fext)
Generator for splitting long texts into ones below the character limit. Messages are split at the nearest line break
and each successive chunk is yielded. Relatively untested

3.4 help Package
3.4.1 help Package

3.5 autoloaders Package

3.5.1 autoloaders Package

class autoloaders.___init__ .AutoLoader
Bases: object
Base class for automatic loaders (e.g. Git)

class autoloaders.__init__ .Git (url, import_as=None, branch=None)
Bases: autoloaders.__init__ .AutoLoader

10 Chapter 3. Project Modules

https://docs.python.org/library/functions.html#object

CHAPTER 4

Indices and tables

¢ genindex
* modindex

e search

11

Skybeard Documentation, Release 1

12 Chapter 4. Indices and tables

Python Module Index

a

autoloaders.__init_ , 10

b

beards, 7

d

decorators, 9

u
utils, 10

13

Skybeard Documentation, Release 1

14 Python Module Index

Index

A

all_possible_beards() (in module utils), 10
AutoLoader (class in autoloaders.__init__), 10
autoloaders.__init__ (module), 10

B

Beard (class in beards), 7
BeardChatHandler (class in beards), 7
beards (beards.Beard attribute), 7
beards (module), 7

C

Command (class in beards), 8
command_predicate() (in module beards), 9
create_command() (in module beards), 9

D

debugonly() (in module decorators), 9

decorators (module), 9

deserialize() (beards.BeardChatHandler method), 8
document() (beards.Filters class method), 8

E

embolden() (in module utils), 10
emit() (beards.TelegramHandler method), 9

F

Filters (class in beards), 8

G

get_args() (in module utils), 10
get_literal_beard_paths() (in module utils), 10
get_literal_path() (in module utils), 10

get_name() (beards.BeardChatHandler class method), 8
get_username() (beards.BeardChatHandler method), 8
Git (class in autoloaders.__init__), 10

is_module() (in module utils), 10

italisize() (in module utils), 10

L

location() (beards.Filters class method), 8

O

on_chat_message() (beards.BeardChatHandler method),
8

on_close() (beards.BeardChatHandler method), 8

onerror() (in module decorators), 9

P

partition_text() (in module utils), 10

R

regex_predicate() (in module beards), 9

register() (beards.Beard method), 7

register_command() (beards.BeardChatHandler method),
8

S

serialize() (beards.BeardChatHandler method), 8

setup_beards() (beards.BeardChatHandler class method),
8

SlashCommand (class in beards), 9

T

TelegramHandler (class in beards), 9
text() (beards.Filters class method), 8
ThatsNotMineException, 9

U

utils (module), 10

15

	Introduction
	Quickstart guide
	Installation
	Running Skybeard
	Skybeard's many beards
	Growing a new beard

	Project Modules
	beards Module
	decorators Module
	utils Module
	help Package
	autoloaders Package

	Indices and tables
	Python Module Index

